Trustworthy Al Systems

-- Image Segmentation

Instructor: Guangjing Wang

guangjingwang@usf.edu

Group Member

Two to three students will form a group

Midterm project: any machine learning application projects

 Final project: evaluating midterm project based on (ONE or TWO) trustworthy AI principles

• 09/08 Group Checkpoints: providing names of your teammates

Quizzes and Slides

- Each open-book quiz will contain 25 single choice questions in 50 minutes with pen and paper.
 - You are not required to memorize or recite everything in the lecture
 - You need to understand points in the lecture: what, why, how
 - You are expected to spend more time beyond the lectures e.g., reading papers, checking the open-source code, API documentation...
- Be a graduate student
 - The learning style changes compare to your undergraduate study
 - There is no required homework or exercise...
 - You need to learn how to learn, how to practice...
- Slides are shared on Canvas

Paper Review (Not a Homework)

- Paper review is a basic task for a researcher
 - Paper Summary
 - Strengths
 - Weaknesses
 - Questions
 - Future Opportunities

When you read a paper, thinking:

- What are the research problem and motivation?
- What are the challenges and technical contributions?
- How is the experimental evaluation?
- How are the related work and overall writing?

Last Lecture

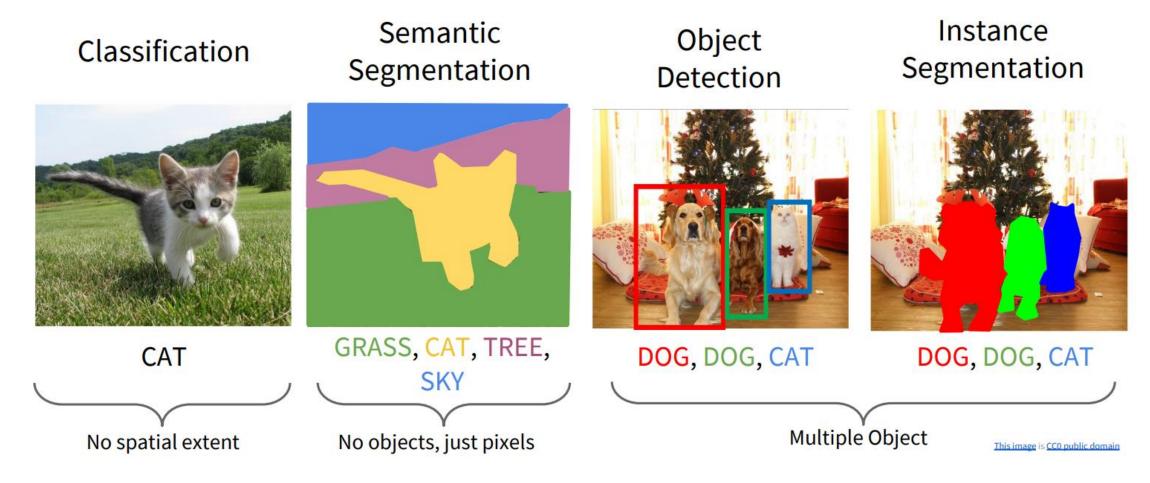
- Image classification
 - Can be extend to any classification problems
- Convolutional neural network
 - The key components: convolution, pool, activation, normalization
 - The general structure design of CNN, e.g., ResNet
- Some practices for project
 - Data preprocessing
 - Transfer learning
 - Regularization
 - Hyperparameter tunning during training

- An image of dimensions $W_{in} \times H_{in}$.
- A filter of dimensions $K \times K$.
- Stride S and padding P.

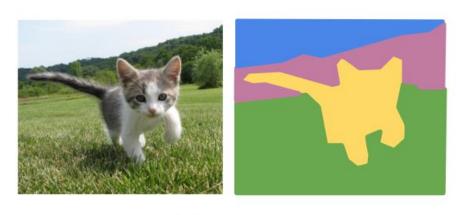
Shape of output activation map

$$egin{aligned} \mathbf{W_{out}} &= rac{\mathbf{W_{in}} - \mathbf{K} + \mathbf{2P}}{\mathbf{S}} + \mathbf{1} \ \mathbf{H_{out}} &= rac{\mathbf{H_{in}} - \mathbf{K} + \mathbf{2P}}{\mathbf{S}} + \mathbf{1} \end{aligned}$$

Computer Vision Tasks

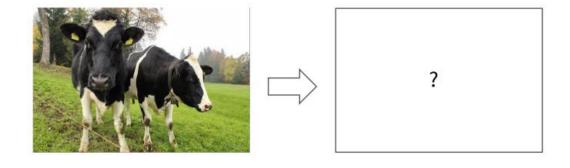


Semantic Segmentation: Problem



GRASS, CAT, TREE, SKY, ...

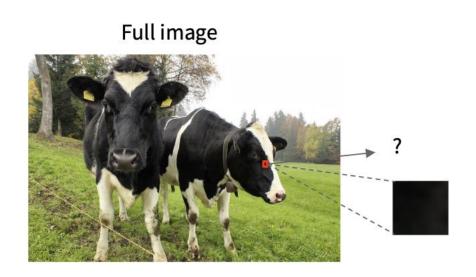
Paired training data: for each training image, each pixel is labeled with a semantic category.



At test time, classify each pixel of a new image.

Label each pixel in the image with a category label.

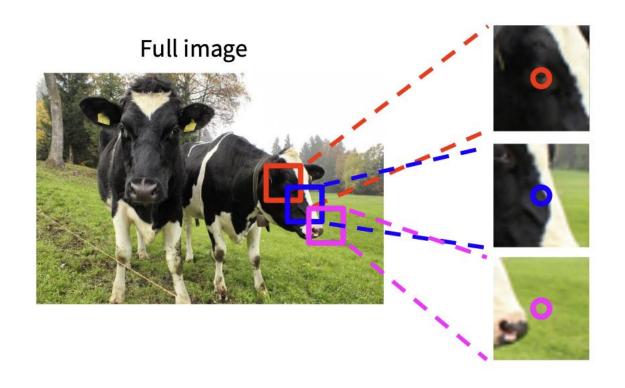
Semantic Segmentation: Classification Problem



Classify each pixel

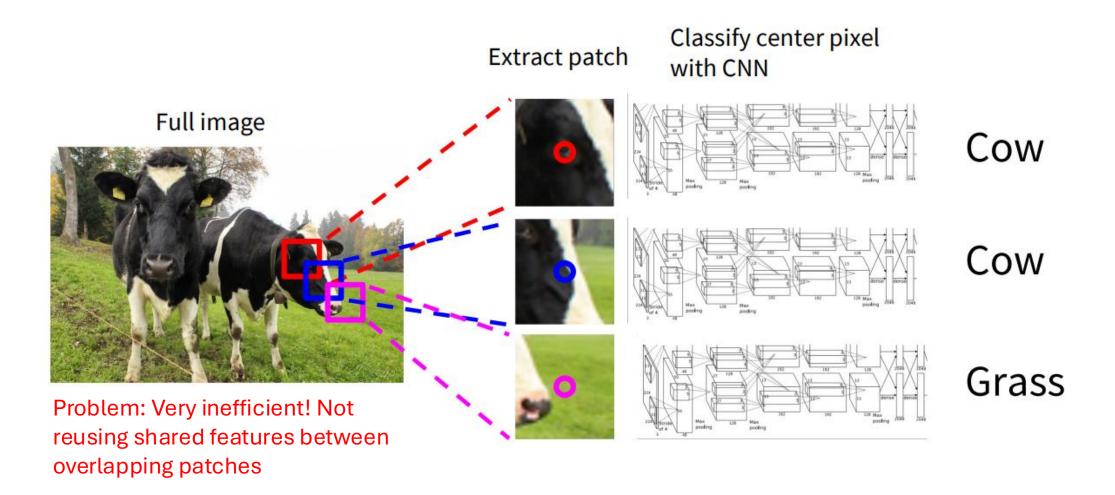
- Impossible to classify without the context
- How do we include context information?

Semantic Segmentation Idea: Sliding Window



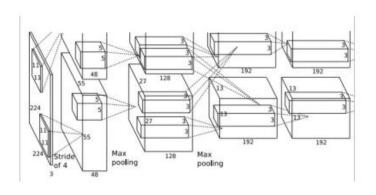
How do we model context information?

Semantic Segmentation Idea: Sliding Window



Semantic Segmentation: Convolution (1)

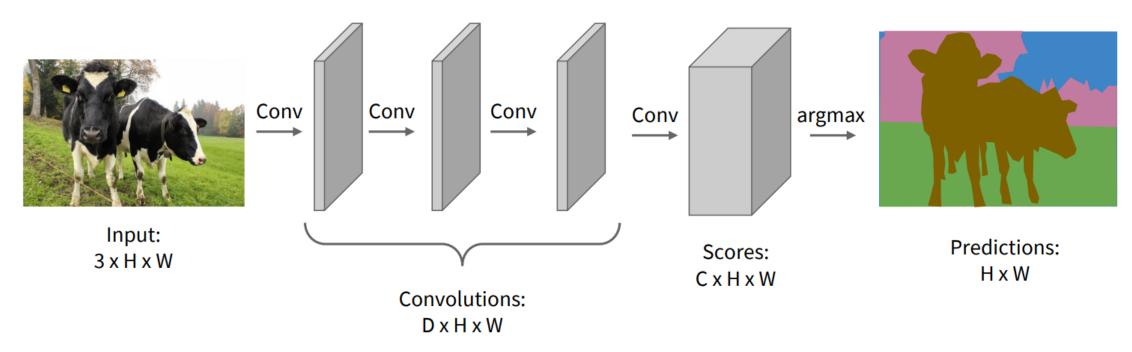
Full image



Encode the entire image with conv net, and do semantic segmentation on top

Potential problem? (hint: input shape, output shape)

Semantic Segmentation: Convolution (2)



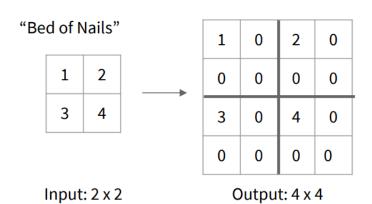
- Do not use the down-sampling operators
- Potential problem? (hint: computation)

Semantic Segmentation: Convolution (3)

Design network as a bunch of convolutional layers, with Downsampling: **Upsampling:** downsampling and upsampling inside the network! Pooling, strided ??? convolution Med-res: Med-res: $D_2 x H/4 x W/4$ $D_2 \times H/4 \times W/4$ Low-res: $D_3 \times H/4 \times W/4$ Input: High-res: CxHxWHigh-res: **Predictions:** 3xHxW $D_1 \times H/2 \times W/2$ $D_1 \times H/2 \times W/2$ HxW

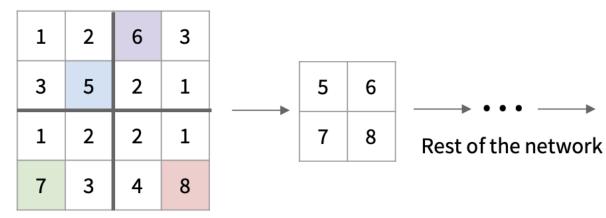
Upsampling

- Non-learnable upsampling
 - Fill the same
 - Fill zeros
 - Max Unpooling
 - You design it...
- Learnable upsampling
 - Transposed convolution



Max Unpooling: Remember location then fill

Max Pooling
Remember which element was max!



Max Unpooling
Use positions from
pooling layer

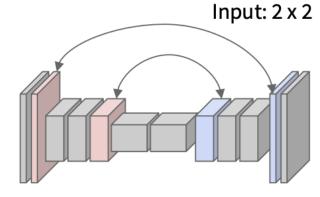
1	2	
3	4	

0	0	2	0
0	1	0	0
0	0	0	0
3	0	0	4

Input: 4 x 4

Output: 2 x 2

Corresponding pairs of downsampling and upsampling layers

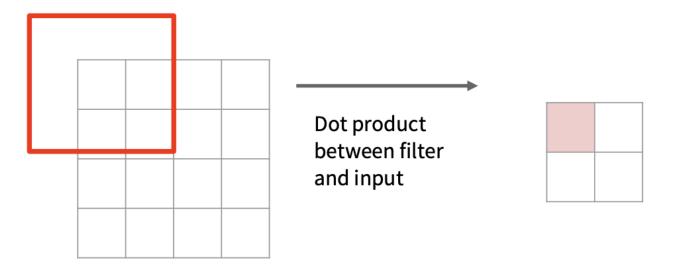


Output: 4 x 4

Recall the Convolution Operation

3x3 convolution: Filter size/kernel size: 3x3

Recall: Normal 3 x 3 convolution, <u>stride 2</u> pad 1



Input: 4 x 4

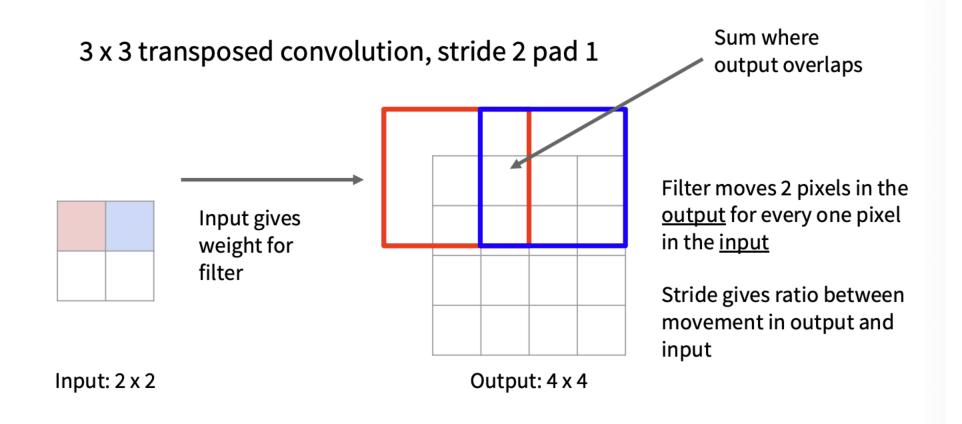
Stride gives ratio between movement in input and output

$$egin{aligned} \mathbf{W_{out}} &= rac{\mathbf{W_{in}-K+2P}}{\mathbf{S}} + \mathbf{1} \ \mathbf{H_{out}} &= rac{\mathbf{H_{in}-K+2P}}{\mathbf{S}} + \mathbf{1} \end{aligned}$$

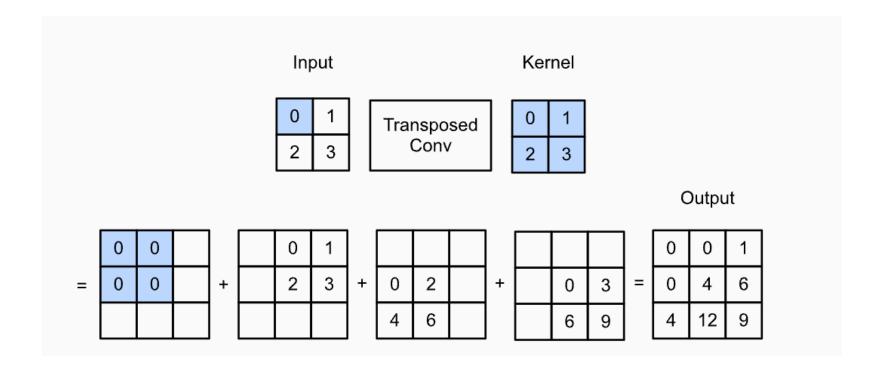
Output: 2 x 2

We can interpret strided convolution as "learnable downsampling"

Upsampling: Transposed Convolution

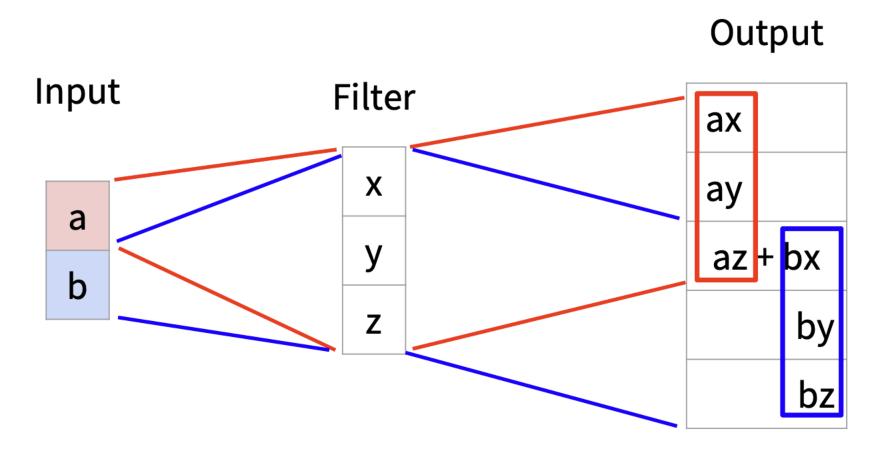


Transposed Convolution Example



Transposed convolution with a 2×2 kernel

Learnable Upsampling: 1D Example



Output contains copies of the filter weighted by the input, summing at where at overlaps in the output

Convolution as Matrix Multiplication

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X\vec{a}$$

kernel
$$\begin{bmatrix} x & y & z & 0 & 0 & 0 \\ 0 & 0 & x & y & z & 0 \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ bx + cy + dz \end{bmatrix}$$

Example: 1D conv, kernel size=3, stride=2, padding=1

Transposed convolution multiplies by the transpose of the same matrix:

$$\vec{x} *^T \vec{a} = X^T \vec{a}$$

$$\begin{bmatrix} x & 0 \\ y & 0 \\ z & x \\ 0 & y \\ 0 & z \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ax \\ ay \\ az + bx \\ by \\ bz \\ 0 \end{bmatrix}$$

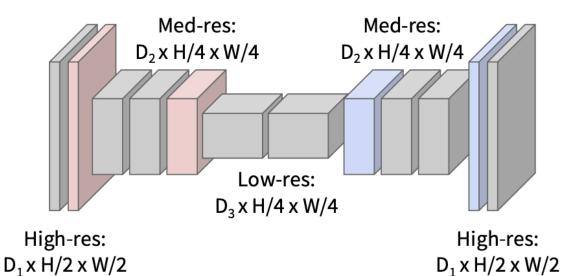
Example: 1D transposed conv, kernel size=3, stride=2, padding=0

Semantic Segmentation: Fully Convolutional

Downsampling: Pooling, strided convolution

Input: 3 x H x W

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

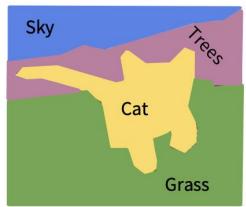


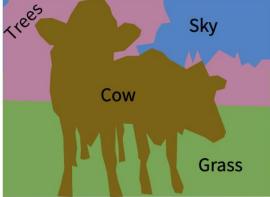
Upsampling: Unpooling or strided transposed convolution

Predictions: H x W

Semantic Segmentation

- Label each pixel in the image with a category label
- Don't differentiate instances, only care about pixels

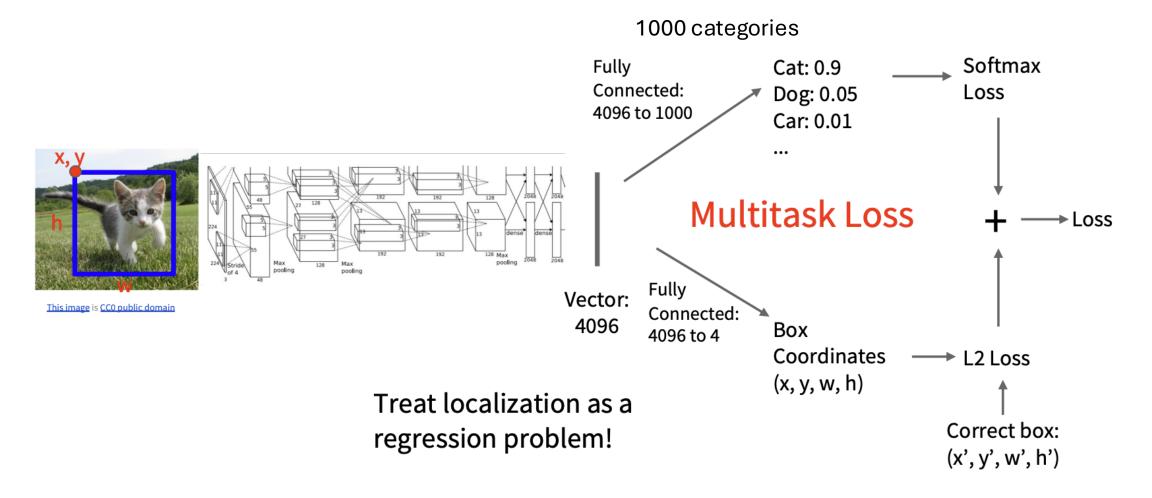




Take a break

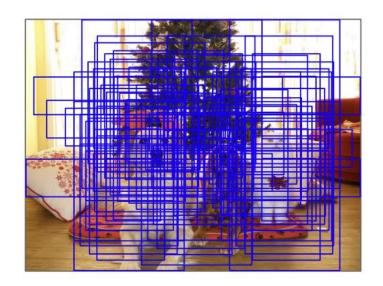
https://www.youtube.com/watch?v=JIPbilHxFbI

Object Detection: Classification + Regression



Object Detection

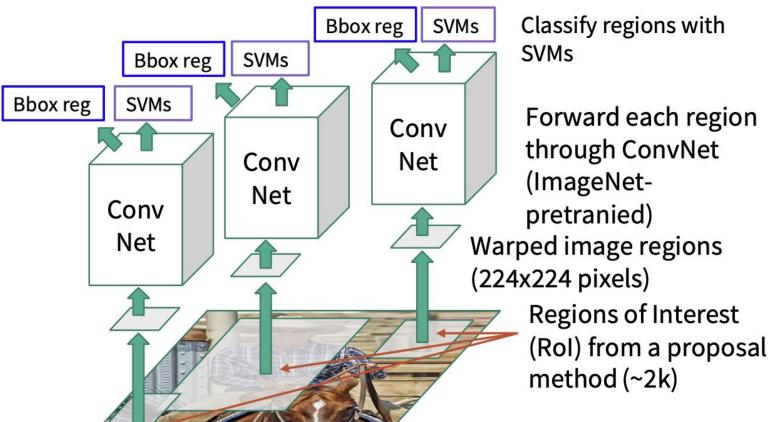
- What if there are multiple objects?
 - Apply a CNN to many different crops of the image, CNN classifies each crop as object or background



Problem: Need to apply CNN to huge number of locations, scales, and aspect ratios, very computationally expensive!

R-CNN

Problem: Very slow!
Need to do ~2k
independent forward
passes for each image!

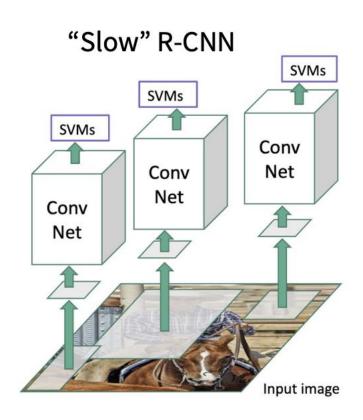


Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation". CVPR 2014.

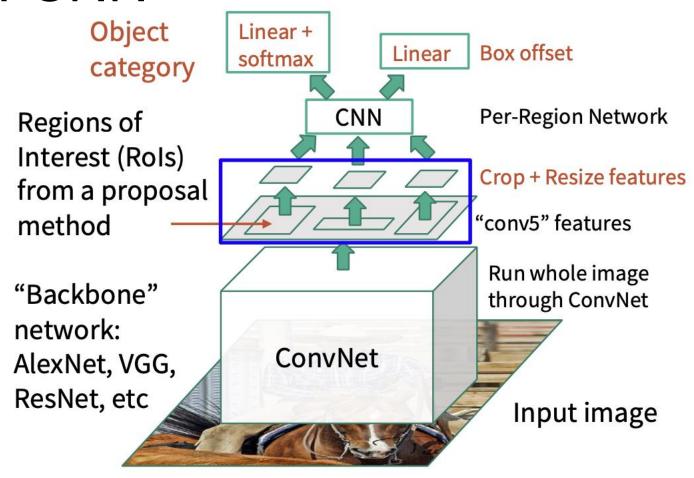
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Input image

R-CNN and Fast R-CNN



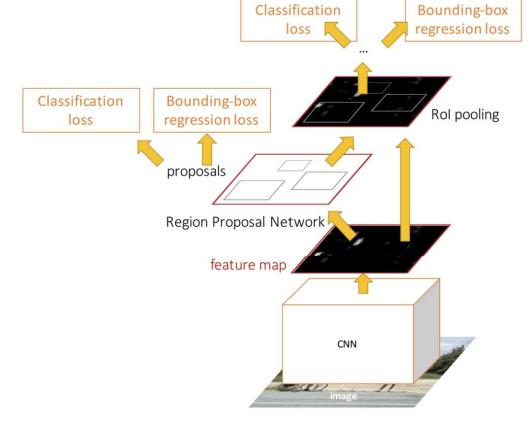
Extract around 2000 bottom-up region proposals from a proposal method



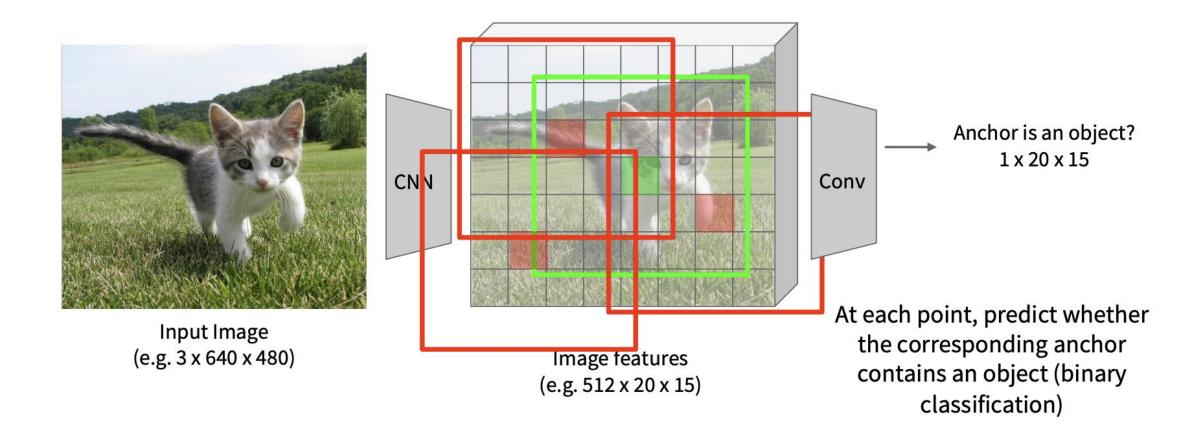
Faster R-CNN: Make CNN Do Proposals

• Insert Region Proposal Network (RPN) to predict proposals from

features



Region Proposal Network (1)



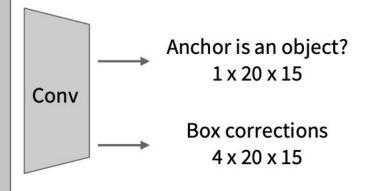
Region Proposal Network (2)

CNN

Input Image (e.g. 3 x 640 x 480)

Image features (e.g. 512 x 20 x 15)

In practice use K different anchor boxes of different size / scale at each point. In this example, K is 1.



For positive boxes, also predict a corrections from the anchor to the ground-truth box (regress 4 numbers per pixel)

Faster R-CNN: Two Stages

Jointly train with 4 losses:

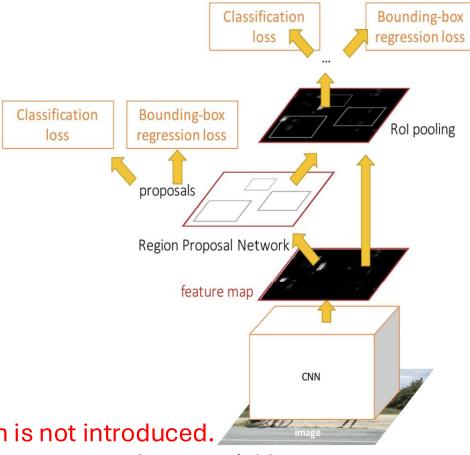
- RPN classify object / not object
- RPN regress box coordinates
- Final classification score (object classes)
- Final box coordinates

First stage: Run once per image

- Backbone network
- Region proposal network

Second stage: Run once per region

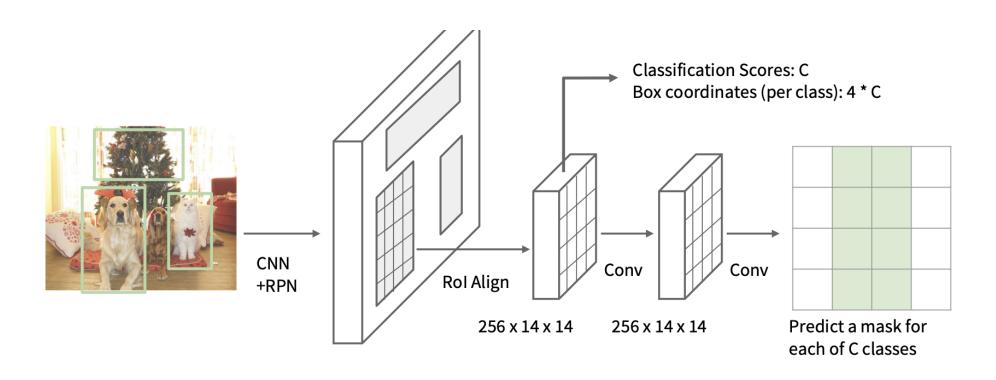
- Crop features: RoI pool / align
- Predict object class
- Prediction bbox offset



Note: Rol pool/align is not introduced.

Extracting fixed-size feature maps from a variablesized region of interest (RoI) in a feature map

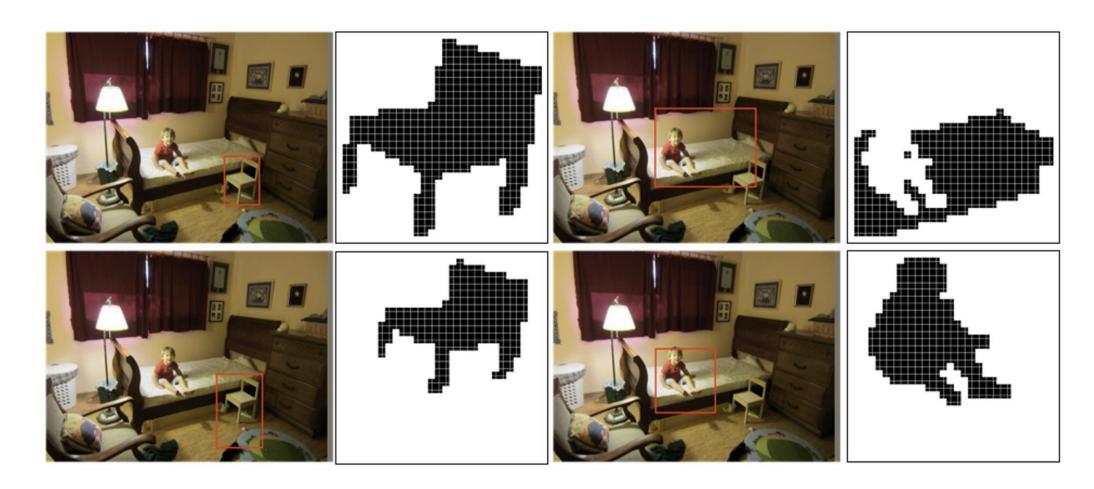
Instance Segmentation: Mask R-CNN



DOG, DOG, CAT

Mask R-CNN: Learn by yourself

Mask R-CNN: Example Mask Training Targets



Instance Segmentation in GPT5

ChatGPT 5 V

Analysis errored ^

```
import torch
import torchvision
from torchvision.transforms import functional as F

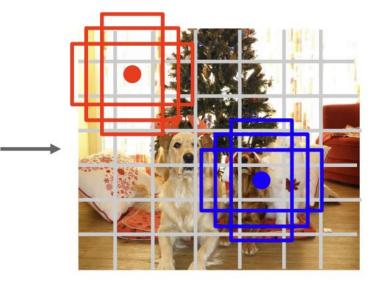
# Load a pre-trained Mask R-CNN model for instance segmentation
model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True)
model.eval()

# Transform the image into tensor format
image_tensor = F.to_tensor(image).unsqueeze(0)

# Perform instance segmentation
with torch.no_grad():
    predictions = model(image_tensor)
```

Yolo: Single Stage Object Detector

Input image 3 x H x W



Divide image into grid 7 x 7

Image a set of base boxes centered at each grid cell Here B = 3

CAI6605 Trustworthy AI Systems

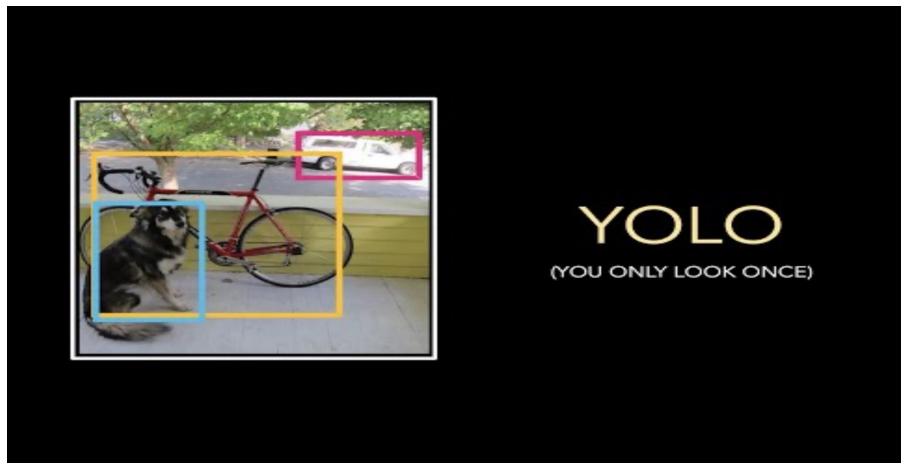
Within each grid cell:

 Regress from each of the B base boxes to a final box with 5 numbers:

(dx, dy, dh, dw, confidence)

- Predict scores for each of C classes (including background as a class)
- Looks a lot like RPN, but category-specific!
- Output: 7x7x(5*B+C)

YOLO: Model as a Regression Problem



https://youtu.be/svn9-xV7wjk

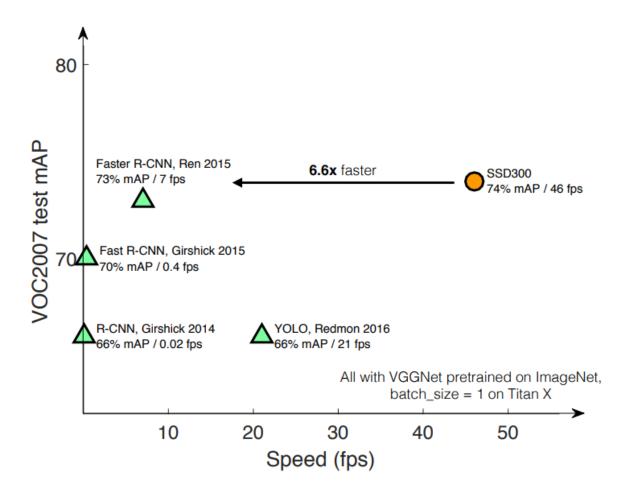
Object Detection: Evaluation Metrics

- Intersection over Union (IoU)
 - Predicted bounding box (A) and ground truth bounding box (B)

$$J(A,B)=rac{|A\cap B|}{|A\cup B|}$$

- Average Precision (AP)
 - The precision-recall curve that is created by varying the detection threshold.
 - mean Average Precision (mAP), which calculates AP for each class and then take the average

Single-shot VS Two-shot Detector



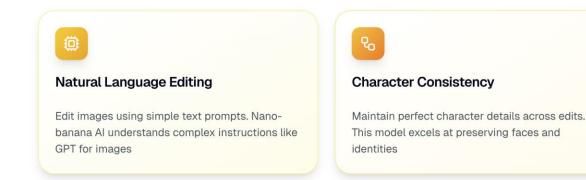
https://www.cs.unc.edu/~wliu/papers/ssd_eccv2016_slide.pdf

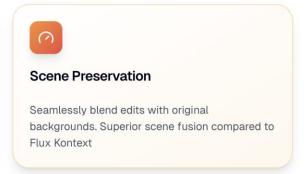
Try Nano Banana or Midjourney

Core Features

Why Choose Nano Banana?

Nano-banana is the most advanced AI image editor on LMArena. Revolutionize your photo editing with natural language understanding





References

https://cs231n.stanford.edu/slides/2024/lecture_9.pdf

https://encord.com/blog/yolo-object-detection-guide/

https://github.com/ultralytics/ultralytics

https://github.com/facebookresearch/detectron2